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Abstract. The goal of this research is to create robust execution circuits
for communication software which can distribute over a network and
which continues to provide its service despite parts of the implementation
being knocked out. Like packets that can be lost (which can be recovered
by the appropriate protocols) we envisage an environment where parts
of a protocol’s execution can be lost. The remaining implementation
elements should continue to operate and be able to recover by themselves
for restoring full services again. Based on a chemical execution model, we
show a few initial examples of packet processing functions that are robust
against the knock-out of any single instruction. These examples illustrate
how the model can be applied to implement resilient communication
protocols, to which we add regulatory signals that can be used to steer
the protocols’ code basis.

Keywords: resilient communication software, autonomic communica-
tion, bio-inspired networking, active networking, Fraglets.

1 Introduction

Autonomic Communication [1] is a long-term research initiative aimed at the
study of the self-organization of network elements, toward their autonomous be-
havior and automated evolvability. Autonomic networks must be self-managing,
which includes self-monitoring and self-healing, among other self-* properties.
Several areas are concerned, including security, trust, stability, resilience, control,
programmability, behavior composition, and context awareness.

Two important and complementary goals of autonomic communication are
resilience and self-healing capacity: resilience against internal failures and mis-
behavior, and self-healing ability to recover from such abnormal conditions.

Resilience and self-healing ability are essential properties of a self-organizing
network, where functional and coherent protocol structures must emerge out of
basic protocol submodules. The system must be able to detect and replace mis-
behaving software at run time, while continuing to provide the service, although
perhaps less efficiently during the transitory repair phase.

In most commonly encountered current computer systems there is always a
risk of full service disruption due to buggy or malicious code. The underlying
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software systems are usually not robust to misbehaving code, and are unable
to autonomously resume their normal behavior after such misbehaving code has
been installed. This fragility stems from the implicit assumption that all code
should be well-behaving, predictable and correct. This assumption is unrealistic,
as it can be observed daily in the form of disruptive software bugs, viruses,
worms, and attacks of various kinds.

The current methodology for the design of protocols is not better. It relies
on the strong assumption of full reliability of the executing components. The
fragility of this approach is easy to demonstrate: remove the processor, remove
the software module, remove a procedure, or even a single instruction. All these
will with high probability lead to the protocol failing to provide the intended
communication service.

We concentrate on the last aspect, i.e. the impact of removing a single in-
struction, or small code fragment, and formulate a first goal: a protocol imple-
mentation should be robust enough such that perturbing any single instruction
does not lead to wrong protocol behavior. Note that the definition of a single
instruction or code fragment depends on the instruction set used, and will be
explained in Section 4.

The second goal is to be able to detect and correct wrong protocol behavior,
provided that the amount of error is below a threshold. Such self-healing ability is
essential to maintain the first goal (resilience) during a potentially long period of
operation. Otherwise errors could accumulate, leading sooner or later to service
disruption.

This is analogous to the desired properties of forward error correcting codes
where a single bit flip still permits to recover and correct a message, or a reliable
transfer protocol where message retransmission can be requested, which in our
case would correspond to rectifying an incomplete protocol software.

In other words: Like the basically unreliable transmission of messages where
messages can be lost, reordered etc., we assume that some subset of the execution
paths of the protocol software are executed in an unreliable way. We then ask
whether communication software can be written such that it is able to recover
itself in such circumstances.

If this can be achieved, it means that altering a single instruction will not do
any harm to the protocol in question. A consequence of this is that it becomes
in theory possible to disperse the code of this resilient protocol, such that each
atomic instruction would be carried out by a different processor. Register val-
ues could be shipped in packets between the nodes. Since the protocol is robust
against the loss of a single instruction, it is now robust against the crash of any
of the processors involved. In practice such partitioning would not occur on a
single instruction basis but at the level of modules or code compartments. In
this case we would like that any compartment crash be tolerable, while keeping
instruction-level robustness inside the compartment. Robustness can be exam-
ined at different levels.

The applications of resilient and self-healing protocols are numerous: they
would enable safe automated installation of new protocols, protocol upgrade,
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run-time customization of protocols to adapt to different network situations,
distributed protocol implementations in sensor networks, spray computers [2],
support for ambient intelligence and other networks of small devices, the dynamic
placing of middle-box elements such as proxies and caches, and so on.

As a first approach to the problem we take inspiration from metabolic path-
ways in cells. These chemical processes are highly interlocked and surprisingly
robust. This is of major interest to the pharmaceutical industry that is faced with
the problem of identifying the multiple change points in a metabolic pathway in
order to alter a cell’s production levels (e.g. reproduction of a virus, cancer cell,
etc.), where a single inhibition point is in general hard to find.

We build upon previous work on fraglets [3] as it permits to easily demon-
strate a simple example of a robust piece of software. The fraglet model comprises
a unified code/data format and execution engine inspired by metabolic networks
in molecular biology.

The rest of this paper is organized as follows: Section 2 discusses related
techniques including self-testing software, fault tolerant systems, resilience in
today’s protocols, and so on. Section 3 describes parallel execution frameworks
for communication software and introduces the fraglet model and instruction set.
Section 4 gives a few initial hints on how resilient protocols can be constructed
such that the loss of a (fraglet) rule has no impact on the service but leaves
some traces behind which can be used to trigger a self-healing process. Section
5 presents our current conclusions and ideas to motivate a new branch of auto-
nomic communication dedicated to resilient and self-healing code for autonomic
network protocols.

2 Related work

2.1 Protocol robustness today

Resilience is a key requirement for any network. At the hardware level it is
common to have redundant links, and redundant parts in core-network routers.
At the software level, most current protocols and network services incorporate
some form of robustness. We give a few examples below.

Robustness to link or node failure is generally achieved by rerouting traffic
to alternative paths. In OSPF (Open Shortest Path First), node or link failures
are detected via link advertisement messages, and new routes are recomputed
accordingly. In BGP (Border Gateway Protocol), as well as in MPLS (Multi-
Protocol Label Switching) route restoration is achieved via backup paths, such
that service can be preserved during failure of the main path.

At the transport layer, TCP recovers from packet loss, duplicate packets,
and congested paths, via an integrated retransmission and congestion control
mechanism. Other adaptive transmission schemes are able to recover from similar
disturbances by using mechanisms adapted to the nature of the traffic they
transport, such as real-time streaming, or loss-tolerant voice/video.
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The DNS (Domain Name Server) resolution service is a key pillar of the
Internet. Resilience is a paramount concern, and is achieved through redundant
servers.

Resilient Overlay Networks (RON) [4] are application-layer overlays on top
of the current Internet. They seek to improve end-to-end reliability and perfor-
mance by dynamically avoiding overloaded or faulty paths. RON nodes monitor
path quality in order to detect and select higher quality paths. This makes it
possible for the end systems to self-organize into more robust topologies that
could not otherwise be offered by the standard Internet routing mechanisms.

These classic robustness protocols focus on external events such as node
or link failure, link errors or congestion and are not robust to failure of the
protocol implementation itself, except if the failure of an implementation on a
node corresponds to the failing of the full node.

2.2 Fault tolerance in distributed systems

The complexity of distributed systems and their dependence upon the underlying
hardware and network infrastructure expose them to several possible faults. Fault
tolerance must therefore be an inherent part of their design, so that they can
keep delivering the intended services with acceptable levels of performance and
safety, even in the presence of failures.

There are multiple techniques for fault tolerance in distributed systems [5–8],
but most of them use variants or combinations of two main building blocks: state
persistence and redundancy.

State persistence can be achieved via checkpointing and/or logging. A check-
point is a snapshot of the process state at a given execution point. A log contains
incremental state changes. Both can be used to resume execution after a failure,
at the latest stage for which state has been consistently saved. This can diminish
the impact of the failure.

Redundancy can take the form of multiple copies of the same process run-
ning on different machines, or multiple versions of a software component which
implement the same functionality in different ways. For example, if failure of a
version is detected, one can substitute the bad version with another one and try
again.

A typical way to implement a fault-tolerant service is by replicating the
servers at several independent locations and coordinating the updates so that
at least one of the servers is available. When redundant processes (either via
simple replication of code or via multiple versions) are used to achieve a result, a
voting scheme is usually employed to decide on the output that must be actually
produced.

Reconfiguration can be performed to recover from faulty processors by repli-
cating the process to an operational processor, or to replace a malfunctioning
version with a correct one. A model to dynamically reconfigure software in dis-
tributed systems is presented in [9]. It analyzes the dependencies among the
different processes in the system to determine the impact of a given reconfigura-
tion operation. The model has been used to build a fault-tolerant environment
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based on ARMOR processes (Adaptive Reconfigurable Mobile Objects of Relia-
bility). However the model itself does not advise on which kind of reconfiguration
should be performed under which circumstances. It leaves this task to system
administrators or possibly other software components with the ability to make
such decisions. Moreover, if the checkpointing or replication logic becomes cor-
rupted, fault tolerance will not be achievable anymore. We call this an extrinsic
approach where fault tolerance logic is incorporated into a system as an add
on. Our interest is in an intrinsic solution where the robustness is part of the
(protocol) software itself.

2.3 Self-testing and self-correcting software

The usual methodologies for software testing and debugging rely on running the
program under a controlled environment using a subset of possible inputs. The
corresponding outputs must be known beforehand, and in most cases bugs arise
after the software is deployed, due to untested combinations of input data or
events.

Self-testing and self-correcting programs [10, 11] have been proposed to im-
prove the reliability of software systems. Given a program P , a self-testing pro-
gram for P is another, simpler program designed to make calls to P on a number
of inputs, and to check whether the corresponding outputs are correct. A self-
corrector for the same program P attempts to return the correct output for each
input value, even in the presence of abnormal behavior of P , provided that the
probability of P producing the wrong output is small enough.

While these techniques can in principle be useful for software debugging and
testing, and to improve software reliability at run time, in practice especially the
self-correcting functions can be hard to design, since they are very specific for
each program. Another shortcoming of self-correcting functions is that they do
not correct the program itself, but just attempt to correct wrong outputs.

In [12] the authors extend the notion of self-testing/correcting functions to
distributed processing or protocols. Their approach has the same advantages
and limitations of [10, 11], but applied to protocols in distributed systems, which
makes the testing and correcting algorithms more complex.

Again, self-testing or correction is an extrinsic approach that works on a given
program: it does not apply to self-testing and correcting its own operation.

2.4 Unfaithful Mobile Code Execution and its Detection

The “malicious host problem” refers to an execution environment which actively
tries to distort a program’s execution or to extract valuable data from it. This
problem, which has been extensively discussed in the mobile agent community,
is closely related to the setting discussed here where we assume (one) random
execution errors or errors from unknown sources. In the examples presented in
section 4 we are pursuing an approach where robustness can be obtained through
protocol transformations “in the clear”. However, an encoded (or, as in [13], an
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“encrypted”) execution is also conceivable and would rejoin the approach taken
in quantum computing, as described below.

The detection of incorrect execution also belongs to the context of malicious
hosts and our quest for resilient protocols. In [14] a watermark is added to the
data which permits to verify whether a remote operation was duly executed.
This is structurally similar to the technique used further down in an example
where each operation has side effects which serve as hooks for detecting the
malfunctioning of an execution circuit.

2.5 Fault Tolerant Quantum Computing

A key aspect of quantum computing is that quantum state (e.g. in a qubit)
should not interact with its environment in an uncontrolled way. Unlike classical
computers, where state can be measured, restored and copied, it is not possible
to copy quantum state or to remove inevitable noise from quantum operations by
some threshold scheme. However, it was shown that with an appropriate encod-
ing of a qubit as a codeword over several qubits, it is possible to implement error
detection capabilities (a) with quantum operations, (b) such that the detection
circuitry can also be subject to potential errors and (c) that errors can be cor-
rected – again with quantum operations – permitting arbitrarily long quantum
computations [15].

This corresponds exactly to what we aim at in this paper: Our goal is to
obtain intrinsically robust protocol implementations where errors can occur in
the “core” protocol implementation as well as in the detection and correction
part. However, one difference to the fault tolerant quantum computing approach
is that we do not target a logical gate level abstraction on top of which the full
(communication) software hierarchy could be stacked. Instead, we wish to expose
the unreliability of execution to the highlevel protocol description and handle it
inside the protocol. That is, we do not want to (re-)implement basic logic gates
and construct computation networks out of them as quantum computing theory
does. Another important difference is that we are interested in software, and in
arbitrary interconnections between code pieces, instead of fixed hardware circuits.

2.6 Resilience and self-healing properties of biological systems

Emergent behavior in biological systems leads to self-regulatory feedback sys-
tems that are robust to external perturbation and to failure of its constituent
parts [16]. These systems tend to be highly decentralized, the emergent behavior
resulting from simple interactions among autonomous agents that make deci-
sions based solely on local views. These simple agents are often anonymous and
non-specific, leading to intrinsic fault tolerance and self-healing properties, as
other agents can easily take over the roles of failed or missing ones. Several ex-
amples can be cited, such as evolutionary selection with survival of the fittest,
flock of birds, colonies of social insects, etc. In this section we concentrate on the
biochemical processes occurring in cells, which inspired the Fraglets paradigm.
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Within a living cell or microorganism there are several chemical processes re-
sponsible for maintaining the various cellular functions. These processes can be
represented by graphs (networks) where the nodes are the chemical compounds
and the links are the reactions that transform these compounds. Biochemical
pathways describe the sequence of chemical reactions inside a biochemical net-
work. Among the numerous cellular biochemical networks we can distinguish
metabolic networks, responsible for the cell’s energy cycle.

These cellular processes are known to be highly robust against mutations,
due to several redundancy and diversity mechanisms, such as [17]: the presence
of multiple genes with similar functions; interactions among genes with unrelated
functions, such as in the case of recessive mutations; the existence of alternative
routes in large metabolic networks; the scale-free nature of metabolic networks
[18], which are dominated by a few highly connected hubs, while the vast ma-
jority of the nodes have a small number of connections, making them inherently
robust to random errors.

2.7 Core Wars

Finally we mention “core wars” [19]: Two programs, which share the same ran-
dom access (core) memory, struggle for survival by attacking the other program
through tampering with its instructions and/or by evading attacks through dis-
location. Various robustness and self-healing strategies have been proposed for
this rather specific context and the associated virtual machine.

3 Parallel and Dynamic Execution Models for Protocols

The traditional implementation of communication protocols with sequential pro-
cessing of instructions is hard if not impossible to “robustify”: An error in a single
instruction will most likely disrupt the fragile execution path. Instead, we seek
an execution environment where several fine-grained activities can go on in par-
allel and which can serve as a backup. In this section we present three systems
which permit a more parallel expression of communication software.

3.1 Gamma

Back in 1986, Banâtre and Métayer proposed Gamma [20], a programming for-
malism based on a chemical reaction metaphor. A good overview of the topic
with its many ramifications can be found in [21], and a recent update in [22].
Gamma computations consist in “chemical reactions” which consume elements
of a multiset data structure, and produce new elements to the multiset. This
model enables highly parallel programs to be expressed in a way that is very
close to their specification. The authors show that this property makes gamma
systems particularly suited as a basis for automated program synthesis.

Many extensions and variations of the basic Gamma system have been pro-
posed, for instance, the Chemical Abstract Machine (CHAM) [23] and Membrane
or P systems [24].
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These chemical execution models have been applied to diverse fields [21]
such as image processing applications, operating systems, compilers, dynamic
software reconfiguration [25], multi-agent systems [26] and distributed computing
[27]. More recently, γ-calculus has been introduced as a formalism that extends
the original Gamma model to a higher-order calculus. In [28] this new calculus
has been applied to specify Autonomic Computing systems, including a mailing
system as an example. However, to the best of our knowledge, such models have
not yet been used to create or reconfigure network protocols.

3.2 Communicating Rule Systems

A formal framework that explicitly addresses communication software is the
Communicating Rule Systems (CRS) by Mackert and Mackert [29]. Basically a
condition/event type of a system, it potentially permits to capture execution
variety at the level of single rules such that alternative rules could take over
should another rule become unavailable. The rule base, however, is static (due
to the author’s interest in protocol validation) and becomes a limitation when
we want to modify or restore a protocol implementation at run time.

3.3 The Fraglet Paradigm

The Fraglet paradigm [3] has been proposed as part of our search for feasible
ways to achieve automated synthesis of protocol implementations. It is based
on a chemical model where “molecules” interact with each other or undergo
some internal transformation. Formally, it is an instance of Gamma systems [20,
22], described above. Like the higher-order γ-calculus [22, 28], Fraglets explicitly
represent code and data in a unified way. The code itself is part of the multiset,
a metaphor which is even closer to real chemical systems when compared to
the original Gamma model [20, 21]. Adopting this specific chemical model (with
Fraglets as the only objects) has the benefit of being able to integrate code
deployment into protocols in a natural way. As we will see in Section 4, this will
also facilitate the production of instruction-failure resilient code.

A fraglet is a string of symbols [ s1 : s2 : . . . : sn ] which represents data
and/or protocol logic. It represents, so to speak, a fragment of a distributed
computation. Fraglets may reside inside a node’s fraglet store or may be carried
in packets, where successive fraglet symbols are analogous to successive header
fields in today’s regular data packets. Upon arrival, a fraglet packet is injected
into the local fraglet store or context.

The fraglet processing engine continuously executes tag matching operations
on the fraglets in the store, in order to determine the actions that should be ap-
plied to them. Fraglet operations, except for the transmission, have the property
that they can be carried out in constant time.

Formally, the store is a multiset: several instances of the same fraglet may be
simultaneously present. This is indicated by a suffix counter value as in [ data :
item ]k (meaning that k copies of fraglet [ data : item ] are stored in this context).
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The fraglet instruction set currently contains two types of actions: transfor-
mation of a single fraglet, and reaction between two fraglets. Table 1 shows some
transformation rules defined so far. Table 2 shows the reaction rules.

Table 1. Transformation rules

Op Input Output

dup [ dup : t : u : tail ] [ t : u : u : tail ]

exch [ exch : t : u : v : tail ] [ t : v : u : tail ]

new [ new : t : tail ] [ t : ni+1 : tail ]

split [ split : t : . . . : ∗ : tail ] [ t : . . . ], [ tail ]

send A[ send : B : tail ] B[ tail ] (unreliably)

The semantics of the transformation rules are:

– dup: Duplicates the symbol at the third position (u); the second field (t)
becomes the new fraglet’s head symbol.

– exch: Swaps the symbols at the 3rd and 4th position (u and v respectively).
– new: Creates a new symbol ni+1 which is unique in this context.
– split: Breaks the fraglet into two parts at the first marker position (∗).
– send: Sends the fraglet unreliably to the destination context specified by the

second symbol (B). The subscript prefix N [. . . ] denotes the context where
the fraglet is stored.

Table 2. Reaction rules

Op Input Output

match [ match : s : tail1 ], [ tail1 : tail2 ]
(merge) [ s : tail2 ]

matchp [ matchp : s : tail1 ], [ tail1 : tail2 ]
(persist) [ s : tail2 ] [ matchP : s : tail1 ]

We introduced two simple reaction rules, listed in Table 2. The “merge”
instruction (match) concatenates two fraglets with matching tags. The “persist”
variant (matchP ) moreover keeps a copy of the initial [ matchP : . . .] fraglet in
the store, thus acts like a catalyst.

It is important to emphasize that our research in defining the instruction set
is still in progress, thus the current state should be interpreted as a snapshot
of an evolving work. In spite of this apparent limitation, in [3] two protocol im-
plementations using fraglets have been shown: a very simple confirmed delivery
protocol and a more complex flow control protocol with send credit and packet
reordering.

4 Resilient Protocols

In this section we demonstrate a few simple computation tasks in a communica-
tion context whose implementation is robust against partial erasure of their code
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base. We start with our definition of protocol robustness and instruction failure,
and a discussion of appropriate languages to achieve robustness to instruction
failure. Then we show two examples of resilient programs at the instruction
level: a “signaling frequency doubler” and a confirmed delivery protocol. We
then discuss the resulting code and insights gained from this exercise.

4.1 Robustness

Today we have a methodology of designing protocols that makes rather strong
assumptions on the reliability of the executing components. The single execution
environments are presumed to be stable: Reliable protocols that execute on these
components are supposed to handle “only” the unreliable aspects of networking,
like broken links, lost packets or transmission errors. That is, robustness applies
to the harsh (communication) environment in which computers operate, not to
the execution support itself.

Here, we redefine protocol resilience, or protocol robustness, as the ability to
survive instruction failures: Even when portions of the protocol’s implementation
are lost (or duplicated, or changed), the protocol is still able to provide the
intended service, albeit with some loss of efficiency. Ideally, a robust protocol
implementation will not only be able to detect but also to recover from code
losses (self-healing).

Our definition of “protocol robustness” is linked to an implementation, and
therefore to the instruction set it is based on. At this point, a question to be raised
is which kind of programming languages are suitable to produce instruction-
level failure resilient code. Classical procedural languages such as C and Java
are very poor candidates, since each single instruction (e.g. assignment, if-then-
else, etc.) is linked to many others via cause-effect relationships. Erase a single
assignment and the program is likely to crash entirely. Redundancy cannot be
directly applied here.

In this paper we use the Fraglet system as our instruction set and consider
examples where redundancy can be applied such that any fraglet rule (which
is a fraglet by itself) can be removed without changing the outcome of the
computation.

An important property that makes fraglets more suitable to instruction-
failure resilience is the integration of code and data into the multiset pool. This
enables redundancy of code to be expressed in a natural way, without harmful
side effects: among a set of redundant rules that match a given input stream,
only one of them will be chosen. If at least one of the rules is present, the pro-
gram can run smoothly in spite of its other sibling rules being knocked out. This
will become more clear with the examples of sections 4.2 and 4.3.

4.2 A Robust Message Doubler with Fraglets

The simple task we want to solve is the doubling of a signal stream: for each
message x we want two messages z to leave a node or to be available for further
processing inside that node. For instance, the messages x could be the ticks
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from a Geiger counter sensor or any other source which encodes information as
a frequency.

Rewriting the signal x (represented as a Fraglet [x]) to the new name can be
done by the single (non-robust) fraglet rule

[ matchp : x : z ]

where the [x] will be replaced by [z]. The doubling is done by a slightly larger
rule, namely

[ matchp : x : split : z : ∗ : z ]

which says that fraglet [x] is replaced by a [ split...] fraglet. This new fraglet will
break apart in the next processing step and produce two [z] Fraglets, which is
the desired effect.

Unfortunately, this program is not robust: Removing the rule will effectively
erase the program. A trivial way to obtain robustness in the Fraglet is to double
the rules:

[ matchp : x : split : z : ∗ : z ]
[ matchp : x : split : z : ∗ : z ]

Here, any one rule instance can be removed, leading to the other rule to be
invoked twice as much as before. This seems to satisfy the resilience condition:
However, it is not possible to determine, from the program’s output, whether
a fraglet (rule) has been lost or not. After the first loss, the program is no
longer resilient, although it continues to run and produce results, until the single
remaining copy is also lost. In order to achieve long-term resilience, the loss of
the first Fraglet must be signaled, permitting to trigger a self-healing process.

Therefore we need an implementation such that the side effect of a loss is not
harmful to its intended core functionality, but permits to identify which fraglet
rule became unavailable, operating as a signal that can be used as input for a
self-healing process.

The next version of the doubling program, also shown in Figure 1, is:

Fraglet rule 1: [ matchp : x : split : s1 : ∗ : s1 ]
2: [ matchp : x : split : s2 : ∗ : s2 ]
3: [ matchp : s1 : split : z : ∗ : a ]
4: [ matchp : s1 : split : z : ∗ : b ]
5: [ matchp : s2 : split : z : ∗ : c ]
6: [ matchp : s2 : split : z : ∗ : d ]

In this case, we have two different rules that transform an input fraglet x into
a split fraglet. This means that with a 50% chance, one of these two rules will
be picked. Depending on which rule was picked, either two [ s1 : . . .] or two
[ s2 : . . .] fraglets will be produced. At this level we have again two rules which
transform an [ s1 : . . .] into two different [ split : . . .] fraglets. In fact, it is at
this level that the doubling of the original messages is happening: half of the [x]
fraglets will become [ s1 : . . .] fraglets, but because of the two levels and branches
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Fig. 1. The processing of fraglets for the robust doubler program.

of [ split : . . .] (resulting in a quadrupling), we have an overall doubling of the
incoming flux of [x] fraglets.

One can observe that removing any one of these 6 fraglet rules will not change
the net outcome. If the first rule is removed, the second rule will react with 100%
of the influx: for each [x] fraglet there will be two [ s2 : . . .] fraglets which each
produce a [z] fraglet as desired. Similarly, removing any of the other rules will
just lead to its “homologue” rule to take over all intermediate fraglets instead
of processing only 50% of them.

Note that this implementation generates additional “side effects” in form of
the fraglets named [a], [b] etc. These signals can be used to react on the loss of
a rule, as is further discussed in section 4.4.

4.3 A Robust Confirmed Delivery Protocol

This example is a simple confirmed delivery protocol (CDP) already shown in
[3]. Node A sends an input data fraglet to node B; when B receives the data it
delivers it to the application and returns an ack fraglet to node A. One possible
implementation of this protocol, in its non-resilient form, is:

A [ matchp : cdp : send : B : deliver ]

B [ matchp : deliver : split : send : A : ack : ∗ ]

The resilient version can be obtained by simply applying the same technique
used for the doubler, that is, duplicate the rule and amend it to generate a
unique symbol that allows to identify which rule has been executed. The resulting
protocol becomes:

A [ matchp : cdp : split : a : ∗ : send : B : deliver ]

A [ matchp : cdp : split : b : ∗ : send : B : deliver ]

B [ matchp : deliver : split : c : ∗ : split : send : A : ack : ∗ ]

B [ matchp : deliver : split : d : ∗ : split : send : A : ack : ∗ ]
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Actually it is possible to apply the same transformation to any matchp rule in
order to make it robust. This is a straightforward way to build resilient programs
out of normal ones.

4.4 Discussion

The main “trick” of our demo programs is the doubling of rules which compete
against each other. This so called “soup” aspect of chemical execution model
makes it much easier to write robust code which continues operation despite
some losses: any sequential execution model where the control flow must pass
through a single instruction is potentially not amendable to robustness, because
there is no fallback execution path.

Self-Healing: An important aspect of our program is that it produces a stream
of signalling symbols, the fraglets a, b, c and d in the examples. These can be used
to monitor the health of the program and to trigger repair mechanisms. Adding
a few “cleaning” rules will remove these signal streams in case everything works
well. For the doubler program, the cleaning rules are:

[ matchp : a : match : c ]
[ matchp : b : match : d ]

And for the CDP program, they are:

A [ matchp : a : match : b ]

A [ matchp : b : match : a ]

B [ matchp : c : match : d ]

B [ matchp : d : match : c ]

As soon as one of the Fraglet rules is removed, this balance is disturbed: By
looking at the relative weights of debris ([a], [ match : a ] etc.), one can infer
for almost all cases which rule was removed. We note here that despite all these
detection activities, the doubler program continues to produce twice as many [z]
as [x] Fraglets, and CDP continues its normal flow of data and acknowledgments.

The design of control loops – which for example regenerate a lost [ matchp :
. . .] rule – is not trivial and, as our first experiments show, will probably lead
to solutions where perfect robustness is not achievable anymore because the re-
sult stream can show temporary distortions. Nevertheless, the resulting program
performs in an elastic way without fully disrupting the processing. Potentially,
one should be able to produce programs which regain correct status after the
healing process and given that the error rate is not too high.

However, the exact way to produce healing code able to reconstruct the
lost rule is still work in progress. One possibility is to copy one of the remaining
rules and rewrite its unique identifier symbol to produce another redundant rule.
Another issue is that ideally, the healing code itself should be resilient. Therefore
it does not suffice to create a healing “meta-level” that regenerates lost fraglets: a
truly self-healing solution should be self-contained. Such a self-contained solution
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could be obtained in two ways: either by rewriting every program to become
resilient and self-healing in itself, or by finding a single “healer” program that is
self-healing by itself, i.e. without relying on a meta-level or on special platform
features. This program could be used to repair other programs to achieve full
self-healing ability, without leading to infinite regression.

Resource Control: In a fully self-healing process we have to deal with resource
control issues: unlike the simple demo examples above, which react on the loss of
fraglet rules, one also has to anticipate an excess of rules. Instead of introducing
logic to remove superfluous code, we consider the continuous generation of code
on the fly and on demand, all new code being automatically consumed after it
has been processed. This would lead to a completely dynamic program where
the [ matchp : . . .] rules would be replaced by [ match : . . .] rules. These later
fraglets would have to be constantly regenerated, thus leading to a program that
would be constantly rewriting itself according to its own sensed performance.
Metaphorically, we need transcription signals which control the gene expression.

Distribution: As mentioned in the introduction, resilience can be put in a
communication context. By changing the intermediate fraglet types such that
they undergo a “transmission”-transformation, one can have different parts of
the process to occur on different nodes. For the doubler example, assuming that
we have four nodes N, M, O and P , we would have the rules:

N [ matchp : x : send : M : split : s1 : ∗ : s1 ]

N [ matchp : x : send : O : split : s2 : ∗ : s2 ]

M [ matchp : s1 : split : send : P : z : ∗ : send : P : a ]

M [ matchp : s1 : split : send : P : z : ∗ : send : P : b ]

O [ matchp : s2 : split : send : P : z : ∗ : send : P : c ]

O [ matchp : s2 : split : send : P : z : ∗ : send : P : d ]

P [ matchp : a : match : c ]

P [ matchp : b : match : d ]

From node N we rewrite [x] fraglets into fraglets that transfer themselves to
nodes M and O and split there. On these nodes, the doubling is performed and
the resulting stream is redirected to node P . Note that here we start to blur the
distinction between traditional robustness protocols, as the crash of a node M

(resulting in removing two rules) would be observable by an imbalance of the
monitoring signals and could trigger the necessary repair actions.

5 Conclusions and Outlook

In this paper we have demonstrated simple programs that continue to perform
their task despite the removal of any of their instructions. This “intrinsic” ro-
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bustness is different from the usual extrinsic fault-tolerance approaches as it
weaves self-monitoring and self-healing into the proper processing.

The ultimate goal is to create software for autonomic networks which is
resilient to accidental or malicious code manipulation and execution problems.
In this paper we have shown only the first step towards this goal: instruction-
failure resilience, which is achieved using a “chemical” protocol representation
and execution model where fallback actions and action equilibria can be easily
expressed. Our examples were based on the Fraglet instruction set and multiset
memory which has the same fine grained parallelism as the formal Gamma model.

The list of potential research topics in this area is immense. Resilience should
be extended to a more general scope beyond single instruction failure: It should
be possible to apply the insights from single-instruction knock-out experiments
to networks of components where medium sized software elements inside a node
can crash in a globally recoverable way, or where the amount of elements running
concurrently inside the whole network must be controlled. Another important
issue is a methodology for transforming existing protocols into a robust, self-
healing implementation.

This latter aspect is still work in progress, namely to generate self-healing
implementations able to react on the anomaly signals produced by the resilient
code, and to regenerate the code base according to these signals. Realistic syn-
thesis methodologies for intrinsically robust protocols will certainly take a long
time to mature, even more for self-healing protocols where more insights are
needed into “code dynamics”.
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