
Fraglets:
Computing with Macromolecules

A Tutorial

BIONETS SP2, Fraglets Workshop

Brussels, January 29-30, 2007

Lidia Yamamoto, University of Basel



Tutorial Overview

• Introduction: Original Fraglets, Fraglets in BIONETS

• Fraglets Programming Basics: original and new instructions,
examples

• Programming Methodology: breaking down complexity,
backwards derivation

• Tools: Automatic code generator (partial), concentration and rate
plots, reaction graph

• Exercises

• Summary and Discussion

Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 2/45



Fraglets: Background

• Creation around 2001 by C. Tschudin [AINS’03]

– Inspiration: Molecular biology, cell metabolism, chemical
computing (Membrane Computing, Gamma, CHAM), multiset
rewriting

• Goals:

– Automated protocol synthesis and evolution

– Unified code and data representation (active+passive
networking)

– Efficient packet processing engine: simple instructions with
constant (short!) processing time

Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 3/45



Fraglets: Background

• Resulting language:

– Fraglet = computation fragment = code = data = packet

– Header tag matching, analogous to packet header processing

– “Assembly language” of chemical computing:
micro-instructions, human-unreadable programs, “write-only”
code!

Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 4/45



Fraglets in BIONETS

• On-line evolution : start from working implementations,
continuous self-optimization

– Resilient execution: resist lost or damaged code portions
(resist harmful mutations)

• Service Evolution , in addition to Protocol Evolution

– From a protocol-specific language to a more generic
computation model (how generic?)

Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 5/45



Fraglets Programming Basics

• Syntax

• Instruction set

• Simple programs

Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 6/45



Fraglets Syntax

• Execution environment: multiset of fraglets

– multiset = unordered set in which elements appear more than
once

• Fraglet original syntax: string n[s1 : s2 : ... : sn]m

– n = node where fraglet executes

– m = multiplicity counter: number of occurences of fraglet in
multiset

• New simplified syntax (Dec’06): n[s1 s2 ... sn]m

– ’:’ now optional

• Goal: simple syntax that can be easily manipulated by automatic
means (e.g. genetic programming)

Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 7/45



Basic Instruction Set [AINS’03]

Transformation rules: involve a single fraglet

[dup t s tail] --> [t s s tail] # duplicate symbol

[exch t s1 s2 tail] --> [t s2 s1 tail] # swap symbol

[split f1 * f2] --> [f1], [f2] # break at ’*’ position

[nul tail] --> [] # discard fraglet

a[send ch b tail] --> b[tail] # UDP-style send

[new t tail] --> [t n_{i+1} tail] # new tag creation

# (never implemented?)

(!) ’:’ made optional > fragletsv0.23

Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 8/45



Basic Instruction Set [AINS’03]

Reaction rules: involve two fraglets

• Merge if match:

[match t tail1], [t tail2] --> [tail1 tail2]

• Persistent match (“catalyst”):

[matchp t tail1], [t tail2] --> [matchp t tail1],

[tail1 tail2]

• Sustain variant:

[matchs s t tail1], [s t tail2] --> [tail1 tail2],

[s t tail2]

# (never implemented?)

Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 9/45



Other instructions

Fraglets v. 0.18 and 0.19, 2005 (www.fraglets.net)

Instructions added after AINS’03 (e.g. WAC’05) or non-documented:

[nop tail] --> [tail] # nop: do nothing

[wait tail] --> ... # wait: delayed execution

# (after 10 execution steps:)

... --> [tail]

[pop t x tail] --> [t tail] # pop: delete symbol

Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 10/45



Simple Programs

• Rewrite header tag

• Append symbol

• Code Mobility

• Lossy link emulation (WAC’05)

Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 11/45



Simple Programs

Rewrite (rename) header tag

goal: [in tail] --> [out tail]

solution: [match in out], [in tail] --> [out tail]

Append (constant) symbol

goal: [in tail] --> [out tail s]

predefined: [store s]

solution: [match in match store out]

trace: [match in match store out], [in tail] -->

[match store out tail], [store s] -->

[out tail s]

Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 12/45



Code Mobility

Read temperature at remote node

a a ch

a b ch

f a[send ch b match temp send ch a tempis]

f b[temp 30]

Result:

f a[tempis 30]

Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 13/45



Lossy Link Emulation

50% loss on average:

a a ch

a b ch

f a[transmit b msg]100

f a[matchp transmit send ch]

f a[matchp transmit nul]

Result:

f b[msg]44

.

Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 14/45



Lossy Link Emulation

25% loss on average:

a a ch

a b ch

f a[transmit b msg]100

f a[matchp transmit send ch]3

f a[matchp transmit nul]

Result:

f b[msg]74

Easy to emulate other loss patterns, delays (nop, wait), etc.

Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 15/45



New instructions (Dec. 2006, Experimental!)

Basic number manipulation: (currently positive integers only)

[length t tail] --> [t len tail] # length in symbols

[sum t n m tail] --> [t n+m tail] # sum two numbers

[lt yes no n m tail] --> # less than:

if n < m then [yes n m tail] # compare two numbers

else [no n m tail]

Examples:

[length t a b c] --> [t 3 a b c]

[sum total 3 4 rest] --> [total 7 rest]

[lt y n 1 2 rest] --> [y 1 2 rest]

[lt y n 9 7 rest] --> [n 9 7 rest]

Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 16/45



New instructions (Dec. 2006, Experimental!)

[copy tail] --> [tail]2 # copy fraglet

[empty y n tail] --> # test if tail empty

if tail==[] then [y] # (useful for recursion)

else [n tail]

Examples:

[copy this is a fraglet] --> [this is a fraglet]2

[empty finish continue 6 7 8] --> [continue 6 7 8]

[empty finish continue] --> [finish]

Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 17/45



New instructions (Dec. 2006, Experimental!)

# create new symbol:

[newname t s1 s2 tail] --> [t s1s2 tail]

# create new node with communication channel:

[newnode ch node tail] --> a node ch, node[tail]

Examples:

[newname t myid 10 rest of fr] --> [t myid10 rest of fr]

[newnode ch b init b mycode] --> a b ch, b[init b mycode]

Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 18/45



More Programs

• Increment counter

• Prepend, append

• Delete from head (reimplement pop)

Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 19/45



Increment counter

goal: [incr x n] --> [x n+1]

How to program: derive code from bottom to top:

[matchp incr ......... ], [incr x n] -->

...

...

...

...

[sum x 1 n] --> # step1: find rule that uniquely leads to

[x n+1] # target result: this rule is: sum 1 to n

Resulting program:

f [matchp incr ......... ]
Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 20/45



Increment counter

goal: [incr x n] --> [x n+1]

How to program: derive code from bottom to top:

[matchp incr ......... ], [incr x n] -->

...

[exch sum 1 x n] --> # step2: find rule that uniquely leads

# to step1, while pushing input as close as

# possible to tail: ’exch’ does the job!

[sum x 1 n] --> # step1: find rule that uniquely leads to

[x n+1] # target result: this rule is: sum 1 to n

Resulting program:

f [matchp incr ......... ]
Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 21/45



Increment counter

goal: [incr x n] --> [x n+1]

How to program: derive code from bottom to top:

[matchp incr exch sum 1], [incr x n] --> # step3: input is

# now at tail, so just match header tag and done!

[exch sum 1 x n] --> # step2: find rule that uniquely leads

# to step1, while pushing input as close as

# possible to tail: ’exch’ does the job!

[sum x 1 n] --> # step1: find rule that uniquely leads to

[x n+1] # target result: this rule is: sum 1 to n

Resulting program:

f [matchp incr exch sum 1]
Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 22/45



Prepend fraglet

goal: [store 7 8], [prepend 4 5 6] --> [store 4 5 6 7 8]

Trace (code derived from bottom to top):

[matchp prepend match store store], [prepend 4 5 6] -->

[match store store 4 5 6], [store 7 8] -->

[store 4 5 6 7 8]

Resulting program:

f [matchp prepend match store store]

Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 23/45



Append fraglet

goal: [store 1 2], [append 3 4 5] --> [store 1 2 3 4 5]

Trace (read bottom-up):

[matchp append split match store match app1 store * app1],

[append 3 4 5] -->

[split match store match app1 store * app1 3 4 5] -->

[match store match app1 store], [app1 3 4 5]

[match store match app1 store], [store 1 2] -->

[match app1 store 1 2], [app1 3 4 5] -->

[store 1 2 3 4 5]

Resulting program:

f [matchp append split match store match app1 store * app1]
Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 24/45



Delete from head (pop)

Goal: reimplement pop instruction (call it ’del’)

[del tag x tail] --> [tag tail]

Trace (backwards derivation, i.e. read bottom-up):

[matchp del exch tmp2], [del tag x y z] -->

[matchp tmp2 exch tmp1 * ], [tmp2 x tag y z] -->

[matchp tmp1 split nul], [tmp1 x * tag y z] -->

[split nul x * tag y z] --> [nul x], [tag y z]

Program:

f [matchp del exch tmp2]

f [matchp tmp2 exch tmp1 * ]

f [matchp tmp1 split nul]
Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 25/45



Recursion

Count fraglet length (without using “length” rule):

[count a b c] --> [total 3] # consumes original fraglet

Resulting program:

f [counter 0]

f [matchp count empty stop cnt]

f [matchp stop match counter total]

f [matchp cnt pop cnt1]

f [matchp cnt1 split match counter incr counter * count]

Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 26/45



Recursion

Trace: (!) here forward (top-down) fine!

[counter 0]

[matchp count empty stop cnt], [count] --> [total 0]

[matchp count empty stop cnt], [count x tail] -->

[match counter incr counter], [count tail]

[matchp stop match counter total], [stop] -->

[match counter total], [counter n] --> [total n]

[matchp cnt pop cnt2], [cnt x tail] -->

[pop cnt2 x tail] --> [cnt2 tail]

[matchp cnt2 split match counter incr counter * count],

[cnt2 tail] -->

[split match counter incr counter * count tail] -->

[match counter incr counter], [count tail] #recursion
Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 27/45



Programming Methodology

Break down complexity:

• Identify partial goals: write them down in terms of
transformations of the form:

[intag ...], [...] --> [outtag ...], [...]

• Recursion = reuse of partial goals (good!)

• Solve each partial goal using bottom-up derivation (parts of it can
be automated, see following slides)

• In case of manual derivation, keep traces for future use (because
resulting program is generally unreadable!!)

Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 28/45



Programming Methodology

• Beware of parallel execution: is your code reentrant?

• Test and debug each partial goal separately

• Test full program: can only work!

Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 29/45



Tools

• Automatic Code Generator (partial): gencode.pl

• Concentration plot: concentr.pl

• Production/Consumption rate: rate.pl

• Reaction graph: log2graph*

Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 30/45



Automated Code Generation with gencode.pl

Goal:

input: [tag x tail]

output:

[frag with x here another x there and again an x tail]

Invoke gencode.pl script:

bin/gencode.pl

tag x

f [frag with x here another x there and again an x]

<CTRL-D>

Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 31/45



Automated Code Generation with gencode.pl

Output program:

f [ matchp tag dup tag_8 ]

f [ matchp tag_8 exch tag_7 an ]

f [ matchp tag_7 exch tag_6 again ]

f [ matchp tag_6 exch tag_5 and ]

f [ matchp tag_5 exch tag_4 there ]

f [ matchp tag_4 dup tag_3 ]

f [ matchp tag_3 exch tag_2 another ]

f [ matchp tag_2 exch tag_1 here ]

f [ matchp tag_1 frag with ]

Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 32/45



Automated Code Generation with gencode.pl

Execution:

f [matchp ...] # paste automatically generated code here

f [tag mysymb rest of fra] # example input

f [tag yoursymb second test] # another example input

e # execute

Result:

f [matchp ...] # same matchp rules, omitted

f [frag with mysymb here another mysymb there and again

an mysymb rest of fra]1

f [frag with yoursymb here another yoursymb there and again

an yoursymb second test]1

Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 33/45



Automated Code Generation

• Able to transform an input symbol into any arbitrary output fraglet

• Saves tedious symbol manipulations

• Deterministic code generation, 100% correct by construction
(except for bugs in the generator itself...)

• Simple, but useful feature, since this pattern is very common: for
example, in RDP (WAC’05):

[rdp payload] --> [transmit payload], [store payload]

– transmit one copy of payload to destination and store other
copy for retransmission in case of loss

Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 34/45



Automated Code Generation

• Recursion supported implicitly (fraglet tail carried along by
default)

• Limitations

– Currently only one input variable supported

– Implementation maybe not the shortest possible

– Do we actually need such micro-transformations, or is this
rather a language limitation? Why not adding features in the
language that allow for any fraglet to be generated with a
single rule?

∗ Trade-off: complexity of the language vs. complexity of the
interpreter

Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 35/45



Concentration Plot: concentr.pl

 1

 10

 100

 1000

 0  1000  2000  3000  4000  5000

C
on

ce
nt

ra
tio

n 
(m

ul
tip

lic
ity

 c
ou

nt
er

)

Time (simulation steps)

rule 1
rule 2
rule 3

Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 36/45



Rate Plot: rate.pl

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  1000  2000  3000  4000  5000

R
at

e 
of

 r
ul

e1
 (

fr
ag

le
ts

 p
er

 s
im

 s
te

p)

Time (simulation steps)

production
 net rate

consumption

Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 37/45



Reaction Graph: log2graph* scripts

Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 38/45



Exercises (free choice of one or more)

• Get the minimum of a list of numbers

[getmin 8 99 4 23] --> [min 4]

• Invert a fraglet:

[invert a b c] --> [inverted c b a]

• Duplicate a fraglet (without using “copy” rule):

[mycopy a b c] --> [a b c]2

• Multiply two numbers:

[multiply result x y] --> [result x*y]

Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 39/45



Exercises (free choice of one or more)

• Recreate the original ’new’ instruction using ’newname’ and ’sum’
(or ’incr’):

[new t tail] --> [t n_{i+1} tail]

• Mutate a fraglet at a random position, by inserting, deleting or
exchanging a symbol, for example:

[mutate a b c] --> [mutated b c]

[mutate a b c] --> [mutated b a c]

[mutate a b c] --> [mutated a a b c]

Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 40/45



Installing, Compiling and Running Fraglets

#unpack:

tar xzvf fraglets0.28.tgz

#compile (if needed)

cd src

make fraglets

#run:

./fraglets -d 3 -e 3 -lim 1000 < myprogram.fra

Knoppix CDs available for those without Linux or MacOS.

Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 41/45



Solution to Exercise: Getmin

Get the minimum of a list of numbers

Trace:

[getmin n] --> [min2 1 1 n]

[getmin n tail] --> [getmin2 1 len tail]

[min2 1 1 n] --> [min n]

[getmin2 1 len a b rest] --> if a<b [islt a b rest]

else [nlt a b rest]

[islt a b rest] --> [nlt b a rest]

[nlt a b rest] --> [getmin b rest]

Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 42/45



Solution to Exercise: Getmin

Program:

f [matchp getmin length len1]

f [matchp len1 lt getmin2 min2 1]

f [matchp min2 pop d1]

f [matchp d1 pop min]

f [matchp getmin2 pop d11]

f [matchp d11 pop getmin3]

f [matchp getmin3 lt islt nlt]

f [matchp nlt pop getmin]

f [matchp islt exch nlt]

Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 43/45



Outlook and Perspectives

• Nice programming model, enticing concepts and programs.

• But code is long, complicated and unreadable by humans:
“write-only programs”...

• Fully automated deterministic code generation still impossible.

• Can we generate code by other means, e.g. Genetic
Programming?

• Should we have a higher-level, human-oriented chemical
programming language?

– if yes, should it be used standalone or compiled into fraglet
code?

Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 44/45



Outlook and Perspectives

Why do we need a chemical language at all?

• high parallelism: parallel, alternative execution paths: resilient to
program transformations in one path, other paths can take over

– “rerouting” execution flows

– must still be verified...

– is there an alternative for on-line software evolution?

Lidia Yamamoto, Univ. Basel Fraglets Tutorial, BIONETS SP2, Jan 2007, Brussels 45/45


